miércoles, 17 de julio de 2024

Orientacion Vocacional a media carrera

 Hay un problema muy comun en la Licenciatura en Matematicas, cuando se termina la carrera, de repente, se dan cuenta de que no hay mas trabajo para Matematico que el  de dar clase, o eso parece, pero no, la Profesion es muy requerida, en los lugares correctos.

Posgrado

Este grado academico es fundamental para un Matematico que desee dedicarse a la Investigacion, hay que comprender que la UNADM no tiene un programa de posgrado, ni acuerdos con otras universidades para ello, los lugares para hacerlo son:

  • Instituto de Matematicas UNAM
  • Facultad de Ciencias, UNAM
  • MADEMS (Maestria en Docencia en Educacion Media Superior), UNAM
  • Maestria en Investigacion de Operaciones, FIUNAM
  • Maestria en Matematicas, UAM
  • Maestria en Matematicas IPN
Ademas de otros Programas de Posgrado en Centros de Investigacion, como IGUNAM, Centro de Ciencias de la Atmosfera, IFUNAM, IMAS UNAM, etc. para algunos, como los de Fisica o Ingenieria,  es necesario hacer cursos Propedeuticos especiales para ingresar en el proceso de  admision, el cual varia, en algunos lugares es por ponencia, en otros por examen.

Lo que recomiendo, es que realicen su Proyecto, en alguno de estos Institutos de Investigacion, el que mas les atraiga, y de preferencia, haganlo como si fuera un Servicio Social, con algun imvestigador de esos Institutos, porque es siendo chicharo de un investigador, donde se forman las relaciones academicas y personales que les abrirarn el camino, es muy comun que si lo impresionan de muy buen grado, los ponga en contacto, con Investigadores extranjeros, o nacionales donde podran continuar su formacion, ya saben, entre mas grande sea la Vaca Sagrada con la que trabajen, mas dificil sera, pero mejor preparados estaran.

Hay muchos programas en el extranjero, en párticular en Paises desarrollados, pueden acceder a ellos, pero no todos otorgan becas, los posgrados que recomiendo, porque siempre estan escasos de alumnos de Matematicas son:
  • Matematicas aplicadas
  • Investigacion de Operaciones
  • Finanzas
  • Matematicas no lineales
  • Ecuaciones diferenciales
  • Ecuaciones Integrales
  •  Topologia
Y si  bien pueden investigar ustedes mismos, lo mas comun, es que vengan Matematicos extranjeros a reclutar, en la FCUNAM, se hacen seminarios o cursos con ellos, en los cuales aprovechan para contactar tantos estudiantes como sea posible, asi que tienen que estar visitando frecuentemente la Universidad mas cercana o la FCUNAM, para enterarse de los eventos y poder presentarse, repito, lo mejor es que sirvan de chicharos de Investigadores, porque ellos estan mucho mas relacionados.

Hay tambien muy buenos programas de psogrado en Alemania, con excelentes posibilidades de quedarse a trabajar alla, siempre y cuando no se lleve una beca mexicana, las mejores son Freiuniversitat Berlin y el Max Planck Institute

He oido que algunas Universidades Españolas dan Becas a estudiantes de habla hispana, pero su nivel no es tan bueno y el trabajo posterior es muy escaso.

Trabajo (No como Profesor) 

Hay los que necesitan trabajar inmediatamente y no pueden darse el lujo de seguir estudiando, en este caso, les recomiendo las siguientes empresas:

1. Matematicas Aplicadas: Grumman, Lockheed, Honeywell, Airbus, Rheinmetall, SAAB, Mitsubishi heavy Industries
2. HIgh Tech: NASA, Microsoft, Google
3. Finanzas: Compañias de fondos de nversion como Vanguard, Blackrock o Bancos norteamericanos
4. Docencia, Varias Universidades Norteamericanas, el salario no es bueno
5. Empresas petroleras, el trabajo es resolver problemas qe los Ingenieros no pueden, aburrido, pero bien pagado
6. Empresas dedicadas a la Investigacion de Operaciones.

En estas empresas, el salario al principio no es tan bueno, porque casi siempre hay un periodo de prueba, despues, mejora mucho, como es evidente, es necesario tener un elevado nivel de Ingles, y si se puede Aleman o Japiones, las Universidades y Empresas japonesas siempre andan buscando matematicos, pero sus exigencias son muy elevadas.

En casi todos los casos, es preferible irse soltero, muy pocas ofrecen facilidades para familias.

Las recomendaciones mas importantes son_
1. Aprendan idiomas, Ingles y algun otro
2. Realicen su Proyecto final en un Instituto con un Investigador importante
3. Mantengan una prescencia visible, en algun Instituto de Investigacion de una Universidad  importante

viernes, 22 de marzo de 2024

viernes, 27 de octubre de 2023

Punto Flotante, definiendo FL(10,5,-3,4)


 La Unidad 2 de la Materia de Analisis Numerico, trata de una forma muy peculiar sobre el concepto de punto flotante, pero usa una notación muy extraña y una aproximacion teorica que no me convence, por alguna razon, no hay libros ni con esa notación, ni con esa aproximacion, lo que lo deja como un tema muy obscuro, yo recomiendo usar el libro de Oda de Analsis de datos experimentales, de la FCUNAM, que maneja el tema desde la Teoria del Error o el Volkov de Analisis Numerico, que lo trata desde la perspectiva de la Aproximacion de las Funciones.

La Notación

En los apuntes, se usa la extraña notación de:


FL es flotante
Base, es la base que usamos, en este caso base 10, pero podria ser binaria, hexagesimal, etc.
P es la Precision, o mejor definida como la mantisa, en los apuntes esta mal escrita, deberia de decir:
0≦di≦p en vez de beta
Exponente mínimo, es el menor de los exponentes que manejaremos
Exponente maximo, es el mayor de los exponentes que manejaremos
Estos dos, definen un rango de valores, asi que si tenemos una regla de 30 centimetros, el maximo estaria en decimetros y el minimo en milimetros, depende del metodo de medicion o de aproximacion

Punto Flotante

El PF es un concepto derivado de la notacion cientifica, y su uso en computacion o calculadoras, basicamente, significa que hay diferentes notaciones, para un numero dado, y el punto flotante, nos sirve para usar la notacion que  mas nos sirva, recorriendo el punto a donde nos convenga.

Asi, supongamos que tenemos el numero 0.012345, podemos representarlo de las siguientes formas:

0.0012345 x 10-1  Base 10, p=7

1.2345 x 102  Base 10, p=4

1234.5 x 10Base 10, p=1

El Exponente lo manejariamos en el problema dado, si comparamos los usados, en el mismo ejemplo, tendriamos Exp min = -1 (el de la ecuacion inicial), Exp max=4, el de la segunda

Asi podemos operar con el como mas nos convenga, podemos unificar notaciones, como transformar medidas de centimetros a metro o a kilometro, o visceversa, y operar todo ordenadamente, asi supongamos que queremos sumarle a un metro un centimetro, primero normalizamos todo:

1 metro = 100 centimetros

O en notacion de punto flotante

1 m = 100 cm = 1 x 102 cm

1 x 10 cm + 1 x 100 cm = 100 cm + 1 cm = 101 cm

El ejemplo se ve trivial, pero su verdadero poder, es cuando estamos manejando cifras o muy grandes o muy pequeñas, asi 5x10-23 es mas facil de escribir que escribir los 23 ceros y cuando lo operamos con cantidades cuanticas muy semejantes, es mas conveniente operar con notacion cientifica, (llamada punto flotante por alguna extraña razon en los apuntes)

Asi en Relatividad tenemos la velocidad de la Luz: 300000000 m/s, lo que es mas facil de escribir como 3x108 m/s y cuando haces calculos de Relatividad, con raices cuadradas y toda la cosa, es mas comodo manejar todo con puntos flotantes (notacion cientifica)

martes, 18 de julio de 2023

Que es la métrica

 Todos estamos acostumbrados a la tradicional definicion de continuidad

En este caso, medimos la distancia entre dos puntos, eso significa 

|x-x0|< δ

La distancia es un tipo de métrica, esto es podemos decir, la distancia entre mi casa y el mercado es de 150 metros, o la distancia entre la Ciudad de México y la de Puebla es de 180 km, al igual lo hacemos en geometria, la distancia entre dos puntos esta bien definida, como la norma entre ellos.

Pero no son las unicas metricas que existen, tomemos un ejemplo de la serie la Tercera Roca:

¿Cual es la distancia entre México y Veracruz?

397 Kilometros

Pero otra metrica, seria tomar el tiempo

6 horas de distancia

O una diferente, el dinero

1100 pesos por ADO

Y si tomamos una emocional

Veracruz siempre esta en mi corazon

Como es evidente, tanto los kilometros como el tiempo son continuos, pero el dinero, no, porque no hay continuidad la tarifa viajando en un autobus de segunda, de primera o de lujo son diferentes, y hay grandes huecos enmedio, en cambio la ultima, es un ejemplo claro de que la topologia puede reducir distancias enormes a nada, (doblar el espacio topologico) solo dependiendo de que metrica usemos.

Entonces podemos decir que la métrica es la forma en que medimos una distancia, por longitud (kilometros), por tiempo, o por cualquier forma que no sconvenga medir

Asi que dependiendo de que metrica tomemos, sera la topologia a usar, las que mejor funcionan son las continuas, pero el mismo concepto de continuidad puede cambiar, por ejemplo, si la defino como todos los planetas de clase M (Star Trek, que son habitables por el ser humano), entonces, la definicion de continuidad tambien cambiaria, porque todo el espacio vacio entre ellos o los planetas que no son M, no estan dentro de nuestro espacio topologico X, ergo, el conjunto los planetas tipo M es continuo.


viernes, 14 de abril de 2023

Principio de Cajas

 El conteo por cajas, establece que:

 

¿Importa el orden?

Si Es una Variación o una Permutación

No Es una Combinación


Segunda Pregunta:


Se emplean todos los elementos:

Si Es una Permutación

No es una Variación


Las cuales resumo en una tabla:



Tomare la notación:

n = agrupación (cajas disponibles)

m = numero de elementos del conjunto (siempre sera el número mayor)

El método de cajas, es:

Si tengo m elementos y n cajas

Pongo el numero de elementos disponibles en la primer caja, luego los que me restan en la segunda y asi voy eliminando de uno en uno hasta acabarme las cajas, tomando un ejemplo de m=7 y n=3, tendría las cajas:

Y el resultado sería : 7*6*5=210

martes, 28 de febrero de 2023

Principio Inclusión-Exclusión

 

Hay que considerar, que los ejemplos númericos, dependen de como se construyan los conjuntos, es más fácil cuando estos son númericos

jueves, 8 de septiembre de 2022

sábado, 12 de febrero de 2022

Construccion de la Integral Triple

La construccion de la Integral triple es como  la doble, tenemos que basarnos en una construccion geometrica, y hay que hacerlo con cuidado, porque ahora los limites dependen de dos funciones, en la forma:

Como se ve, la integral interior, depende de dos funciones, la intermedias de una y la exterior debe de ser numerica, en este caso en particular tome los limites como dzdydx, por claridad, pero pueden tomarse en el orden que consideremos mas eficiente, dxdydz, dydzdx, etc.

EJEMPLO 1

CUBO

Integremos sobre el cubo unitario de la figura, en el que:



PASO 1

Limites x,y

Proyectar sobre el eje xy

Esto nos produce un cuadrado:


Como se ve, es evidente que:

x∈[0,1]

y∈[1,2]

Por lo que ya tenemos los limites de integración para las integrales externa e intermedia


PASO 2
Limites para z

Al ser un cubo, podemos ver en la figura, que para todo punto (x,y), los valores de z van del 3 al 4, esto es:

z∈[3,4]

Por lo que nuestra integral quedaria:


EJEMPLO 2

Entre dos funciones

Ahora supongamos que deseamos calcular el volumen entre las funciones:

Notese que una cosa muy diferente son las Regiones en donde calcularemos la integral, y otra la funcion a integrar, que para evitar confusiones, la he llamado h(x,y,z) y no la especificare, porque no es importante para la construccion geometrica.

Esto nos define dos paraboloides, cuya interseccion se ve en la figura, una circunferencia:

PASO 1

Escoger el orden de Integracion

En este caso elijo dzdxdy, porque dado una (x,y), es facil darse cuenta donde comienza y donde acaba la z asociada a ella, empieza en el paraboloide inferior y termina en el superior (notese que solo es necesario escribir las ecuaciones en el respectivo lugar de la integral)

Asi mi integral triple quedaria:

Paso 2

Proyeccion sobre el eje xy

Lo que nos interesa es la proyeccion en el plano xy

La figura morada, es la sombra de la interseccion

El calculo de la interseccion es:

PASO 3

Limites para x,y

Para todo valor de x, se ve que el valor va de la parte inferior de la circunferencia a la superior, como no podemos escribir la ecuacion de la circunferencia en la integral (son dos variables)=, despejamos y en funcion de x, y escribimos esto en los liumites, notese que cada semicirculo tendria asi, su propia  ecuacion, que solo depende de x:



Asi que

De la inspeciión de la figura, se ve que x va de menos raiz de dos a raiz de dos, esto es delos extremos radio de la circunferencia

Lo que significa que la integral dzdydx.quedarian.



La cual se ve dificil de hacer, pero como tiene tantas raices y binomios cuadrados, es evidente, que es mas facil hacerla con cilindricas.


Para este ejemplo me he basado en la clase 25 del Curso de Calculo Multivariacional del MIT:


NOTAS:

Esta es una de las posibles iteraciones, la proyeccion podria hacerse con los ejes xz o yz, se elige la que nos de los limites mas claros o bien, que pueda darnos una funcion de integracion mas manejable.

Es muy importante notar el orden de los limites de integracio:

  • Para la integral interior, la funcion es maximo de 2 variables
  • Para la intermedia, la funcion es maximo de una variable
  • Para la exterior, solo puede haber valores numericos
  • Si la variable de la interior es z, los limites deben estar en funcion de x e y
  • Si la variable intermedia es y, entonces los limites deben de estar en funcion de x
  • Y correspondientemente, en cada variable, le corresponde cierto orden de limites y diferenciales.



miércoles, 9 de febrero de 2022

Como construir una integral doble

Para la solucion de una integral doble, se deben de seguir una serie de pasos, si se siguen correctamente, la solucion sera mas sencilla de resolver y su solucion correcta. El como se construye la Integral doble es fundamental, para ello hay que ver que nos dice la Gometria, la cual establece los limites para integrar, el tipo de sistema de coordenadas a usar y fundamentalmente, el orden de iteracion.

EJEMPLO 1

RECTANGULOS

Una integral doble se construye de tal forma que los limites que dependen de funciones se resuelvan en la primera integral (interna), mientras que los numericos se resuelvan en la segunda (externa), siempre debemos tener como resultado un numero.

Notese que uso dA en la integral, porque dependiendo de la geometria, decidire si se usa dydx o dxdy (en el caso de polares, casi siempre se usa rdrdΘ  porque tenemos funciones que dependen del angulo).

Supongamos que integraremos una funcion f(x,y), cuya proyeccion sobre el plano xy es un cuadrado, con:

x∈[0,1]

y∈[1,2]

El primer paso, siempre sera dibujar esta proyeccion, porque en base a ella definiremos los limites de integracion y en base a ellos, el orden de integracion.


La region esta marcada con naranja

En este caso, como ambos son numericos, no importa el orden y podemos integrar de cualquiera de estas formas:


EJEMPLO 2

REGION 1

Ahora veamos otro ejemplo, pero hagamoslo mas interesante, con:

x∈[0,1]

y∈[0,1-y]

Primero hagamos la grafica, que esta contenida entre y=0, y=1-x, x=1 y x=2 (notese que deben de ser dados los limites en el problema)


A este tipo de grafica, la llamamos Region 1 e implica que el orden de iteracion sera dydx, vemos que la grafica esta contenida entre las paralelas x=0 y x=1, pero lo interesante es que para toda x fija, los valores de y van desde 0 a la grafica y=1-x, 

Esto se debe a que los limites de integracion de la integral interior, deben de ser funciones de la exterior, en este caso, como la interior es dy, sus limites deben de estar en funcion de x.

En este caso, ya no es indistinto el orden, tenemos ahora una funcion, en y, esto implica que nuestras integrales van a tener que ser:


Notese que no podemos tenerlas en otro orden, porque de esa forma no podriamos tener un resultado numerico.

EJEMPLO 3

REGION 2

Veamos ahora otro tipo de Region, la 2, que implica  una integracion en el orden dydx, ahora tenemos que:

x∈[f(y0),f(y1)]

y∈[1,2]

En este caso, la funcion depende de y, algo que no solemos hacer en dimensiones inferiores, pero que se vuelve algo normal en dimensiones superiores supongamos que:

f(y0)=0 y f(y1)=x+1

Como siempre, empezamos con la grafica:

Despejemos y=x+1   x=y-1

Esto es para cualquier y en el intervalo, x va de 0 a la recta y=x+1

Asi que nuestros limites de integracion serian:

x∈[0,y-1]

y∈[1,2]

Y nuestra integral quedaria:


EJEMPLO 4

ACOTADA POR FUNCIONES

Y finalicemos con un ultimo ejemplo, mas complicado:

x∈[f(y0),f(y1)]

y∈[f(x0),f(x1)]

Como siempre, comenzamos con la grafica:

Como se ve, la figura necesariamente comienza en un valor dado de x o y y termina en otro valor  de x o y, lo que nos conviene, es ver donde intersectan ambas graficas y tomar esos valores para los limites de la integral externa, mientras que para la interna, tomar la funcion que sea mas facil de integrar, esto es:

Los puntos de interseccion son:

P1=(-2.79,3.79)

P2=(1.79,-0.79)

Para la exterior podemos tomar:

x∈[a,b] = [-2.79,1.79]

o

y∈[c,d] = [3.79,-0.79]

Y para la interior

Recuerda, siempre van las funciones en la interior

Tomemos dx para la exterior, nuestra integral quedaria:

Tomemos dy para la exterior, nuestra integral seria:

Ya es cuestion de practica cual escoger, la que veamos mas facil de solucionar, o la que tenga limites mas simples.

No incluyo ejemplos numericos, ya que esos abundan, lo malo es que la mayoria estan mal explicados, pero con lo visto aqui, resultaran obvios.

Nota importante:

Para la Integracion Numerica, hay que tomar varias consideraciones:

  • Limites con raices cuadradas o binomios al cuadrado usar Coordenadas polares
  • Si f(x,y) es un cilindro, usar cilindricas
  • Si f(x,y) es una esfera, usar polares
  • Si las proyecciones sobre el eje xy son circunferencias o pedazos de ellas, usar polares.


domingo, 16 de enero de 2022

Principios de Criptografia

 La Criptografia es la rama de las Matematicas dedicada a codificar la escritura, de tal forma que se puedan enviar mensajes secretos, que solo aqullos en posesion de la clave puedan comprender, es claro que el objetivo es controlar nuestas clkaves y romper las del enemigo, de tal forma que ellos no puedan enterarse de lo que planeamos, pero nosotros si.

Este simple concepto, ha sido cfausa de miles de muertes, del derrumbamiento de IImperios y en mucho sentido, ha labrado el mundo tal y como lo conocemos, en la Primera Guerra Mundial, Estados Unidos fue a la guerra, gracias al Telegrtama Zimmerman, en el cual Alemania proponia a México una alianza militar, para retomar sus territorios perdidos, la clave alemana habia sido rota por los britanicos y pudieron leer el mensaje con toda claridad.

En la Segunda Guerra Mundial, ocurrio lo mismo, los alemanes habian desarrollado un avanzado sistema, llamado Enigma, en el cual, los mensajes estaban codificados, por medio de una maquina con rotores, cada letra dependia de la poscion inicial de cada rotor, de tal forma que nunca se repetia nueamente, asi si habia una A, la siguiente A podia ser cualquiera de las otras letras.

Estadistica

La forma mas sencilla de Decodificacion es por medio de esta herramienta, cada idioma tiene un uso peculiar de cada letra, asi en occidente, el español usa mucho las vocales, asi la A es la mas frecuente, seguida por la E, y asi sucesivamente, basta con que hagamos una tabla de frecuencia del uso de las letras y podremos leer un mensaje codificado.

Asi que es importante ocultar las frecuencias, para eso se inventaron varios metodos, como el usar un orden alestorio, por ejemplo, basarse un libro, y usar las frecuencias asociadas a una pagina determinada del libro, asi por ejemplo, si la primera S de la pagina 55 es la 23 letra en aparecer, eses sera el numero que le correspondera, para la segunda S del mensaje, se correspondera con la primera S de lka pagina 100, digamos, que esta la posicion 12, asi que tendremos dos numeros diferentes para las S. En este caso, la solucion es ubicar el libro y la regla de correspondencia, lo cual a veces ha funcionado, pero sin embargo, es mejor usar la estructura del lenguaje, asi debemos buscar los DIE en aleman o los INSKY en ruso, que siempre tendran la misma estructura a lo largo del mensaje, esto rs crear vReglas de Correspondencia para las estructuras, esto puede hacerse por tablas de frecuencia (una por cada pagina) y por Sistemas de Ecuaciones Lineales.

Estosa sistemas sencillos fueron reemplazados por los Complejos Sistemas de Rotores, en los cuales, la primera vez que una letra Aparece, tiene una regla de corespondebncia, la segunda otra, la tercera otra y asi sucesivamente, de tal forma que la Combinatoria resultante es giganteca, o en palabras Matematicas un Sistema de n variables y n ecuaciones, que todavia es posible resolver. pero que te llevara mucho tiempo hacerlo; y si el enemigo cambia el orden de los rotores el dia siguiente, no es posible leer los de mañana.

Es ahi donde se uso la primer computadora moderna, Colossus, podia hacer los millones de calculos necesarios y reproducir el mensaje en lenguaje llano, pero aun asi, no podia leer los cientos de mensajes diarios del enemigo, por lo que su uso seria limitado, a menos de que se pudiera conocer el orden diario de los rotores, esto es la Reglaa de Correspondencia, y esto se consguio de una forma muy interesante, usando la Burocracia y la Psicologia, los alemanes, muy ordenados, siempre terminaban sus mensajes con un_ HEIL HITLER, la cual nos da una pista de 6 letras con su respectiva Regla, asi que extrapolando el orden, podian tener el orden de hasta 6 rotores, como las maquinas alemanas solo tenian 5, sobraba una, por  lo que Coloso se uso para traducir rapidamente los mensajes, no para romperlos.

Probabildad

Y aqui entra en juego esta rama, en la actualidad, se siguen usando principios parecidos, asi si los rusos codifican VODKA, la Probabilidad de que las letras ASDFGH signifiquen lo mismo, es calculable, aun con una modesta computadora personal, es posible hacer una decodificacion decente. solo es necesario saber Probabilidad.

Este es solo un artriculo introductorio, hay muchos metodos de codificar y de romper las codificaciones, no he mencionado a proposito las KEYS (Llaves), la ultima moda computacional, ni los metodos usados para decodificar el JN-25 y mas, porque eso requeriria mucho espacio, en realidad, este es el primer articulo de mi intento por Descifrar el Disco de Festos.

jueves, 25 de febrero de 2021

Kantinfleando, el Infinito

 El Infinito, ese concepto matematico tan increible, mi definicion favorita de el, es: imagina el numero mas grande que puedas, y piensa un numero mas grande, ese es el infinito, un proceso, algo que nunca acaba.

Y tiene reglas aritmeticas muy peculiares:

∞+1 = ∞

∞+2 = ∞

...

 ∞+∞ = ∞

Estas son bastante claras, algo locas, pero comprensibles, pero en cambio la resta:

 ¿∞-1 = ∞?

Esto ya no cumple la definicion, pero por otro lado, si a algo infinito le quitamos un elemento, como que suena a que deberia de ser todavia infinito, de lo cual viene la pregunta, ¿cuantos elementos hay que quitarle a infinito, para que ya no sea infinito?, o en escritura mas formal:

 ∞-∞ = ∞

o

 ∞-∞ = 0

Eso dependera del tipo de infinito que sea el que esta restando, y es que hay varios tipos de infinitos, los numerables y los no numerables, pongamos un ejemplo:

Si a los Enteros Z, los operamos con los Naturales N

 Z-N es un conjunto infinito, pero si

Z-Z = 0

Entonces tenemos que la cardinalidad del conjunto es lo que cuenta, esto es, ¿hay infinitos mas grandes que otros infinitos?

 Mientras me rasco la cabeza, los dejo pensando en este interesante concepto Matemático.

Próximanente en Kantinfleando:



jueves, 11 de febrero de 2021

Instalando un Sistema Operativo Linux, version facil

La ventaja de los Sistemas Operativos Linux modernos, es que hay algunos, que son muy faciles de instalar.

Computadora

Para hacerlo extrafacil,  vamos a usar una computadora vieja, que aun sirva, y que tenga los siguientes requisitos:

  • 2 GB de Memoria RAM
  • Disco Duro de al menos 40 GB
  • Conectada a Internet por medio de un cable Ethernet

Esto significa que hasta computadoras del 2005 pueden servirnos, de preferencia seria bueno que el Disco Duro fuera nuevo, pero no es indispensable, esto es un aprendizaje.

Es muy importante saber si la computadora es de 32 o 64 Bytes, porque eso nos indica cual Sistema es necesario instalar, hay varias formas de hacerlo:

  1. Investigar en el manual o en internet cual tipo de computadora es.
  2.  Por ensayo y error, usar un Disco de Instalacion de 64 y si marca error, entonces es de 32
  3. Entrando al BIOS cuando enciende la maquina y viendo en el apartado de Procesador

 Descargar el Sistema Operativo:

Vamos usar Linux Mint, que se descarga de:

https://linuxmint.com/

Elegimos Descargar el que se corresponde con el tipo de Computadora que tenemos, 32 o 64 Bytes, esto suele llevar un par de horas, dependiendo de la velocidad de tu internet.

Una vez descargado, se quema en un DVD pero usando la funcion de Quemar Imagen o Quemar ISO, todos los quemadores modernos lo tienen como una opcion, si no lo quemas así, no correra el Disco de Instalacion

Tambien se puede instalar usando una Memoria USB, para hacerlo ve el articulo aqui:

 https://vivaubuntu.com/instalar-linux-mint-desde-usb/

Instalacion

Ya con el Disco / Memoria USB, con el Sistema Operativo, se sigue el siguiente procedimiento:

  1. Se enciende la Computadora, aparece la marca y unas pequeñas letras que indican como se puede entrar al BOOT y al BIOS, cada marca es diferente, por ejemplo, Dell suele requerir apretar la tecla F12 mientras que HP pide la F), para cambiar el encendido de la maquina, antes de que se borre la pantalla inicial, se debe de apretar esa tecla, hay que ser rapido, porque muchas marcas solo dan segundos para hacerlo.
  2. Aparece el  menu para elegir que Hardware se va a usar para encender la maquina, se selccion DVD o USB, segun lo que tengas
  3. Comienza Linux, se tardara un poco en iniciar todos los recursos, al final aparece esta pantalla
  4. Se puede probar el Sistema por un rato, verificando que exista conexion inalambrica, y que todo funciones como deseamos, probando las diferentes aplicaciones que se tienen.
  5. Si nos convencio, podemos comenzar la instalacion, dando click en el icono del escritorio.
  6. Los pasos de instalacion son muy sencillos, solo hay que seguirlos.
  7. Al finalizar la instalacion, el sistema te pregunta si se reinicia, y listo, ya quedo instalado el Sistema Operativo.

lunes, 1 de febrero de 2021

Matematicas contra la propagacion del Coronavirus

Una Epidemia se convierte en Pandemia cuando su contagio se vuelve mundial, esto es, tenemos que comprender la ecuación de la Propagacion,  de esta forma si X es el numero de personas portadoras de una Enfermedad, estas la propagaran P a un ritmo t dado por alguna de las siguientes ecuaciones:

Se toma la ecuacion que mas se ajuste a la propagacion de la enfermedad, asi la Peste seria mejor modelada por la Ecuación 2, mientras que el Coronavirus lo seria por la 1; como se nota, en ambos casos debemos de tomar en consideracion dos variables, X t que no siempre es el tiempo; puede ser tambien la taza de contagio, y no necesariamente es lineal, pero omitamos esa parte por el momento; para evitar la propagacion, hay que hacer tender estas ecuaciones a cero, tanto como sea posible; para lograr esto, lo mejor es hacer a X tender a cero 


¿Pero que significa hacer tender a X a cero?, en lenguaje llano, es tener la menor cantidad posible de portadores, o en otras palabras, imponer una Cuarentena a los posibles Difusores, si no tenemos portadores caminando por las calles, la Propagación es cero, esto es una explicacion matematica a la solucion que se encontro para la Peste Negra, la Cuarentena a los viajeros, la misma solucion se puede aplicar al COVID.

Esto tambien explica la eficiencia de la distancia social, si modifico ligeramente la ecuacion 1:


Con n la tasa de contagio (2.6 para el COVID), y ahora tomando a t como el numero de personas con las que interactua, en un tiempo dado, se logra el mínimo absoluto si:


Esto es, cuando no se deja circular Infectados dentro de una sociedad

 Y un mínimo relativo si:


Esto es, si se mantiene un distanciamiento social, entre menos personas interactuen con el enfermo, menos Propagacion

Trivialmente, se alcanza un máximo si:


Esto es, entre mas gente se relacione con el portador, más Propagación, algo que las familias que tuvieron reunion navideña, aprendieron por las malas.

lunes, 11 de enero de 2021

Computadora ideal para un Estudiante de Matematicas

 Existia la creencia de que la mas moderna computadora es la mejor, pero eso ha dejado de ser cierto, las computadoras actuales estan diseñadas con la idea de que sean desechables, que cada dos años, sea necesario comprar una nueva, el desarrollo se ha detenido y en realidad, desde el 2015 las maquinas no han evolucionado, lo que si lo han hecho son los Sistemas Operativos, y lo han hecho tan bien, que las viejas computadoras ahora son capaces de hacer lo mismo que las mas nuevas, con la ventaja de que pueden ser reparadas y expandidas.

Sistemas Operativos

Windows 10  (y sus antecesores) no da el ancho para estudiar una Licenciatura en Matemáticas,  el principal problema es su poca confiabilidad, su propension a virus y fallas catastroficas, ademas de su lentitud para realizar actividades de altas matematicas, y si esto fuera poco, sus aplicaciones o programas son muchas veces de paga, y bueno, para decirlo sutilmente, no son de lo mejor, los mejores programas estan en Linux, la razon es sencilla, es la herramienta favorita del mundo de la Ciencia y se desarrollan cosas que ni se sueñan en el mundo Windows; son mas modernas, potentes y eficientes, se actualizan todo el tiempo y son las mismas herramientas que se seguiran usando por el resto de la vida, quien aprendio a usar LibreOffice Calc, lo seguira usando por decadas, mientras que Excel sera totalmente diferente la proxima vez que se actualice Windows.

En el Mundo Linux hay muchos Sabores distintos, se les llama distribuciones y uno puede elegir con cual se siente mas comodo,  e incluso hay algunas que estan especificamente dirigidas a estudiantes, como:

  1. EDUBUNTU
  2. UBERSTUDENT

Las cuales tienen todas las herramientas que un estudiante ha soñado poseer para realizar bien su labor.

Pero las hay tambien especializadas en Matematicas, como

  1. FEDORA MATEMATICAS
  2. OPEN SUSE CIENTIFICO

O bien se pueden descargar todas las aplicaciones necesarias en un Sistema Basico como:

  1. UBUNTU
  2. DEBIAN
  3. MANJARO
  4. ANTIX
  5. LXLE

Yo recomiendo que si estas iniciandote en el mundo Linux, instales el Sistema Operativo mas amigable y sencillo:

LINUX MINT

Y despues instalarle todas las aplicaciones que necesites.

Y si tienes una Computadora vieja arrumbada, (de minimo 2 Gb de RAM y 40Gb de Disco Duro), la uses para aprender, le des una limpiada general la repares y le instales alguno de estos sistemas, para que puedas aprender a usarlos, sin gastar nada, porque todos los Sistemas Linux son gratuitos, desarrollados por Centros de Enseñanza, de Investigación y Usuarios.

,Si vas a usar una computadora muy vieja (de 32 Bytes), recomiendo que uses:

LXLE

ANTIX

MX

LINUX MINT 32

En cuanto pueda, hare una entrada explicando como instalar Linux en una computadora.

Yo estoy escribiendo esto en una vieja HP 6735s de alrededor del 2008, equipada con Fedora 33 cientifico y funciona como seda, he aqui mi escritorio.



martes, 11 de agosto de 2020

Transformación Lineal

Transformación lineal, según Hollywood:


De acuerdo a esto, el Virus T de Umbrella corp. se llama así, porque es una Transformación lineal, del conjunto Humanos al Zombie:

T: H → Z

jueves, 11 de junio de 2020

Transformaciones de variables aleatorias, Suma X+Y

Este es una Deconstrucción (análisis detallado) del ejemplo que propone Rincón en su video:

PASO 1

Primero tengo que definir dos vectores que cumplan con:
    a) Ser continuos
    b) Exista su inversa f⁻¹  y es diferenciable
    c) Es estrictamente creciente o decreciente
    d) Existan y su Dominio este en el intervalo (0,1) y si es una función compuesta debe de cumplir también esto
    e) Sean independientes

Así que Rincón propone los siguientes vectores:

 (X,Y) ~ unif (0,1)x(0,1)

Esto es, la función uniforme en el cuadrado (0,1)

Que cumple las tres condiciones a,b y c; y la d si los restringimos a ese intervalo.

ENCONTRAR X+Y

Sea 𝝓 = (x,y) = (u,v)

Tengo que 𝝓⁻¹ es continua y tiene inversa
𝝓⁻¹ (u,v) = (u,v)   por la función seleccionada, la identidad
𝝓⁻¹ (u,v) = (𝝓₁⁻¹ (u,v) ,  𝝓₂⁻¹ (u,v) )

Su función de Densidad es:

Lo que busco es:
¿Cuál es la función de densidad de X+Y?

PASO 2

Determino su intervalo de validez:

Sea X+Y

X
Y
X+Y
0
0
0
0
1
1
1
0
1
1
1
2
Entonces X+Y ∈ (0,2)

PASO 3 
Aplico la formula, para 0<u<2
Como se que X, Y son independientes (así las construí)


Entonces la formula es:

Esto es el producto de las marginales, que son uniformes en (0,1) NO tienen necesariamente que serlo en en (0,2), aunque estas si lo cumplen

Así que tengo que el conjunto de valores de v en donde se cumple:

fX(u,v)fY(v) ≠ 0

Esto sucede si cualquiera de las dos marginales es idéntica a la función de densidad:

f (u-v) = 1   si 0 < u-v < 1
fY(v) = 1       si 0 < v < 1



Paso 4 

Condiciones para v

a) 0 < u-v < 1
    -u < v < 1 – u
    u > v > u – 1
b) 0 < v < 1

Para que a y b se cumplan al mismo tiempo, tiene que suceder que:

max {0, u-1} < v < min {1,u}


Paso 5 

Cálculo la integral:

Para 0 < u < 2


La divido en partes:

Para 0 < u < 1   (min {1,u}-max {0, u-1}) =  (u-0) = u
Para 1 < u < 2    (min {1,u}-max {0, u-1}) =  (1-(u-1))=(2-u)

Por lo que la función de densidad de la suma es:





Paso 6

Gráfica

La gráfica para cuando: u  > 1 y u < 1 es:


Usando propiedades geométricas, tengo que el área del triángulo se reduce a:

área = 1

Justo lo que necesitaba.

Prácticamente los mismos pasos se usan para la Diferencia y el Producto, el Cociente, en general no existe, por las condiciones del Jacobiano, (son muy pocas las funciones inversas que puedan calcularse sin incumplir las condiciones de el)